Graded Lie Algebras of Maximal Class Ii

نویسندگان

  • A. CARANTI
  • M. F. NEWMAN
چکیده

We describe the isomorphism classes of infinite-dimensional graded Lie algebras of maximal class over fields of odd characteristic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded Lie Algebras of Maximal Class Iv

We describe the isomorphism classes of certain infinite-dimensional graded Lie algebras of maximal class, generated by an element of weight one and an element of weight two, over fields of odd characteristic.

متن کامل

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

Lattice of full soft Lie algebra

In ‎this ‎paper, ‎we ‎study ‎the ‎relation ‎between ‎the ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎with ‎the ‎lattice theory. ‎We ‎introduce ‎the ‎concepts ‎of ‎the ‎lattice ‎of ‎soft ‎sets, ‎full ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎and next, we ‎verify ‎some ‎properties ‎of ‎them. We ‎prove ‎that ‎the ‎lattice ‎of ‎the ‎soft ‎sets ‎on ‎a fixed parameter set is isomorphic to the power set of a ...

متن کامل

The Structure of Thin Lie Algebras up to the Second Diamond

Thin Lie algebras are graded Lie algebras L = L ∞ i=1 Li with dimLi ≤ 2 for all i, and satisfying a more stringent but natural narrowness condition modeled on an analogous condition for pro-p groups. The two-dimensional homogeneous components of L, which include L1, are named diamonds. Infinite-dimensional thin Lie algebras with various diamond patterns have been produced, over fields of positi...

متن کامل

DEFORMATIONS OF W1(n)⊗A AND MODULAR SEMISIMPLE LIE ALGEBRAS WITH A SOLVABLE MAXIMAL SUBALGEBRA

In one of his last papers, Boris Weisfeiler proved that if modular semisimple Lie algebra possesses a solvable maximal subalgebra which defines in it a long filtration, then associated graded algebra is isomorphic to one constructed from the Zassenhaus algebra tensored with the divided powers algebra. We completely determine such class of algebras, calculating in process low-dimensional cohomol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999